Therapeutic targeting of mitochondrial superoxide in hypertension.
نویسندگان
چکیده
RATIONALE Superoxide (O2(-) ) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. OBJECTIVE Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit. METHODS AND RESULTS In this study, we found that the hormone angiotensin (Ang II) increased endothelial mitochondrial superoxide production. Treatment with the mitochondria-targeted antioxidant mitoTEMPO decreased mitochondrial O2(-), inhibited the total cellular O2(-), reduced cellular NADPH oxidase activity, and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), whereas SOD2 depletion with small interfering RNA increased both basal and Ang II-stimulated cellular O2(-). Treatment of mice in vivo with mitoTEMPO attenuated hypertension when given at the onset of Ang II infusion and decreased blood pressure by 30 mm Hg following establishment of both Ang II-induced and DOCA salt hypertension, whereas a similar dose of nontargeted TEMPOL was not effective. In vivo, mitoTEMPO decreased vascular O2(-), increased vascular NO production and improved endothelial-dependent relaxation. Interestingly, transgenic mice overexpressing mitochondrial SOD2 demonstrated attenuated Ang II-induced hypertension and vascular oxidative stress similar to mice treated with mitoTEMPO. CONCLUSIONS These studies show that mitochondrial O2(-) is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases.
منابع مشابه
Pentaerythritol Tetranitrate Targeting Myocardial Reactive Oxygen Species Production Improves Left Ventricular Remodeling and Function in Rats With Ischemic Heart Failure.
Reduced nitric oxide bioavailability contributes to progression of cardiac dysfunction and remodeling in ischemic heart failure. Clinical use of organic nitrates as nitric oxide donors is limited by development of nitrate tolerance and reactive oxygen species formation. We investigated the effects of long-term therapy with pentaerythritol tetranitrate (PETN), an organic nitrate devoid of tolera...
متن کاملTherapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia
Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen...
متن کاملMitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.
Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hy...
متن کاملCyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.
AIMS Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite. This ma...
متن کاملIdentification of bovine, ovine and caprine pure and binary mixtures of raw and heat processed meats using species specific size markers targeting mitochondrial genome
A specific polymerase chain reaction (PCR) method was applied for identification of bovine (Bos taurus), ovine (Ovis aries) and caprine (Capra hircus) pure and binary mixtures of raw and heat-processed meats. These meats are used in food industry products and/or for direct consumption of consumers. The mitochondrial DNA was amplified as a template in a PCR reaction by use of specific primers re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 107 1 شماره
صفحات -
تاریخ انتشار 2010